Tipos da série Fourier
Série trigonométrica de Fourier (TFS)
$ \ sin n \ omega_0 t $ e $ \ sin m \ omega_0 t $ são ortogonais no intervalo $ (t_0, t_0 + {2 \ pi \ over \ omega_0}) $. Assim, $ \ sin \ omega_0 t, \, \ sin 2 \ omega_0 t $ forma um conjunto ortogonal. Este conjunto não está completo sem {$ \ cos n \ omega_0 t $} porque este conjunto cosseno também é ortogonal ao conjunto seno. Portanto, para completar este conjunto, devemos incluir os termos cosseno e seno. Agora, o conjunto ortogonal completo contém todos os termos de cosseno e seno, ou seja, {$ \ sin n \ omega_0 t, \, \ cos n \ omega_0 t $} onde n = 0, 1, 2 ...
$ \ portanto $ Qualquer função x (t) no intervalo $ (t_0, t_0 + {2 \ pi \ over \ omega_0}) $ pode ser representada como
$$ x (t) = a_0 \ cos0 \ omega_0 t + a_1 \ cos 1 \ omega_0 t + a_2 \ cos2 \ omega_0 t + ... + a_n \ cos n \ omega_0 t + ... $$
$$ + b_0 \ sin 0 \ omega_0 t + b_1 \ sin 1 \ omega_0 t + ... + b_n \ sin n \ omega_0 t + ... $$
$$ = a_0 + a_1 \ cos 1 \ omega_0 t + a_2 \ cos 2 \ omega_0 t + ... + a_n \ cos n \ omega_0 t + ... $$
$$ + b_1 \ sin 1 \ omega_0 t + ... + b_n \ sin n \ omega_0 t + ... $$
$$ \ portanto x (t) = a_0 + \ sum_ {n = 1} ^ {\ infty} (a_n \ cos n \ omega_0 t + b_n \ sin n \ omega_0 t) \ quad (t_0 <t <t_0 + T) $$
A equação acima representa a representação trigonométrica da série de Fourier de x (t).
$$ \ text {Onde} \, a_0 = {\ int_ {t_0} ^ {t_0 + T} x (t) · 1 dt \ over \ int_ {t_0} ^ {t_0 + T} 1 ^ 2 dt} = { 1 \ sobre T} · \ int_ {t_0} ^ {t_0 + T} x (t) dt $$
$$ a_n = {\ int_ {t_0} ^ {t_0 + T} x (t) · \ cos n \ omega_0 t \, dt \ over \ int_ {t_0} ^ {t_0 + T} \ cos ^ 2 n \ omega_0 t \, dt} $$
$$ b_n = {\ int_ {t_0} ^ {t_0 + T} x (t) · \ sin n \ omega_0 t \, dt \ over \ int_ {t_0} ^ {t_0 + T} \ sin ^ 2 n \ omega_0 t \, dt} $$
$$ \ text {Aqui} \, \ int_ {t_0} ^ {t_0 + T} \ cos ^ 2 n \ omega_0 t \, dt = \ int_ {t_0} ^ {t_0 + T} \ sin ^ 2 n \ omega_0 t \, dt = {T \ over 2} $$
$$ \ portanto a_n = {2 \ sobre T} · \ int_ {t_0} ^ {t_0 + T} x (t) · \ cos n \ omega_0 t \, dt $$
$$ b_n = {2 \ sobre T} · \ int_ {t_0} ^ {t_0 + T} x (t) · \ sin n \ omega_0 t \, dt $$
Série Exponencial de Fourier (EFS)
Considere um conjunto de funções exponenciais complexas $ \ left \ {e ^ {jn \ omega_0 t} \ right \} (n = 0, \ pm1, \ pm2 ...) $ que é ortogonal ao longo do intervalo $ (t_0, t_0 + T) $. Onde $ T = {2 \ pi \ over \ omega_0} $. Este é um conjunto completo, então é possível representar qualquer função f (t) como mostrado abaixo
$ f (t) = F_0 + F_1e ^ {j \ omega_0 t} + F_2e ^ {j 2 \ omega_0 t} + ... + F_n e ^ {jn \ omega_0 t} + ... $
$ \ quad \ quad \, \, F _ {- 1} e ^ {- j \ omega_0 t} + F _ {- 2} e ^ {- j 2 \ omega_0 t} + ... + F _ {- n} e ^ {- jn \ omega_0 t} + ... $
$$ \ portanto f (t) = \ sum_ {n = - \ infty} ^ {\ infty} F_n e ^ {jn \ omega_0 t} \ quad \ quad (t_0 <t <t_0 + T) ..... .. (1) $$
A equação 1 representa a representação exponencial da série de Fourier de um sinal f (t) no intervalo (t 0 , t 0 + T). O coeficiente de Fourier é dado como
$$ F_n = {\ int_ {t_0} ^ {t_0 + T} f (t) (e ^ {jn \ omega_0 t}) ^ * dt \ over \ int_ {t_0} ^ {t_0 + T} e ^ {jn \ omega_0 t} (e ^ {jn \ omega_0 t}) ^ * dt} $$
$$ \ quad = {\ int_ {t_0} ^ {t_0 + T} f (t) e ^ {- jn \ omega_0 t} dt \ over \ int_ {t_0} ^ {t_0 + T} e ^ {- jn \ omega_0 t} e ^ {jn \ omega_0 t} dt} $$
$$ \ quad \ quad \ quad \ quad \ quad \ quad \ quad \ quad \ quad \, \, = {\ int_ {t_0} ^ {t_0 + T} f (t) e ^ {- jn \ omega_0 t} dt \ over \ int_ {t_0} ^ {t_0 + T} 1 \, dt} = {1 \ over T} \ int_ {t_0} ^ {t_0 + T} f (t) e ^ {- jn \ omega_0 t} dt $$
$$ \ portanto F_n = {1 \ over T} \ int_ {t_0} ^ {t_0 + T} f (t) e ^ {- jn \ omega_0 t} dt $$
Relação entre as séries de Fourier trigonométrica e exponencial
Considere um sinal periódico x (t), as representações TFS e EFS são fornecidas abaixo, respectivamente
$ x (t) = a_0 + \ Sigma_ {n = 1} ^ {\ infty} (a_n \ cos n \ omega_0 t + b_n \ sin n \ omega_0 t) ... ... (1) $
$ x (t) = \ Sigma_ {n = - \ infty} ^ {\ infty} F_n e ^ {jn \ omega_0 t} $
$ \ quad \, \, \, = F_0 + F_1e ^ {j \ omega_0 t} + F_2e ^ {j 2 \ omega_0 t} + ... + F_n e ^ {jn \ omega_0 t} + ... $
$ \ quad \ quad \ quad \ quad F _ {- 1} e ^ {- j \ omega_0 t} + F _ {- 2} e ^ {- j 2 \ omega_0 t} + ... + F _ {- n} e ^ {- jn \ omega_0 t} + ... $
$ = F_0 + F_1 (\ cos \ omega_0 t + j \ sin \ omega_0 t) + F_2 (cos 2 \ omega_0 t + j \ sin 2 \ omega_0 t) + ... + F_n (\ cos n \ omega_0 t + j \ sin n \ omega_0 t) + ... + F _ {- 1} (\ cos \ omega_0 tj \ sin \ omega_0 t) + F _ {- 2} (\ cos 2 \ omega_0 tj \ sin 2 \ omega_0 t) + ... + F _ {- n} (\ cos n \ omega_0 tj \ sin n \ omega_0 t) + ... $
$ = F_0 + (F_1 + F _ {- 1}) \ cos \ omega_0 t + (F_2 + F _ {- 2}) \ cos2 \ omega_0 t + ... + j (F_1 - F _ {- 1}) \ sin \ omega_0 t + j (F_2 - F _ {- 2}) \ sin2 \ omega_0 t + ... $
$ \ portanto x (t) = F_0 + \ Sigma_ {n = 1} ^ {\ infty} ((F_n + F _ {- n}) \ cos n \ omega_0 t + j (F_n-F _ {- n}) \ sin n \ omega_0 t) ... ... (2) $
Compare as equações 1 e 2.
$ a_0 = F_0 $
$ a_n = F_n + F _ {- n} $
$ b_n = j (F_n-F _ {- n}) $
Similarmente,
$ F_n = \ frac12 (a_n - jb_n) $
$ F _ {- n} = \ frac12 (a_n + jb_n) $