PyBrain - camadas
Camadas são basicamente um conjunto de funções usadas em camadas ocultas de uma rede.
Percorreremos os seguintes detalhes sobre camadas neste capítulo -
- Camada de compreensão
- Criando Camada usando Pybrain
Camadas de compreensão
Vimos exemplos anteriores em que usamos camadas como segue -
- TanhLayer
- SoftmaxLayer
Exemplo usando TanhLayer
Abaixo está um exemplo onde usamos TanhLayer para construir uma rede -
testnetwork.py
from pybrain.tools.shortcuts import buildNetwork
from pybrain.structure import TanhLayer
from pybrain.datasets import SupervisedDataSet
from pybrain.supervised.trainers import BackpropTrainer
# Create a network with two inputs, three hidden, and one output
nn = buildNetwork(2, 3, 1, bias=True, hiddenclass=TanhLayer)
# Create a dataset that matches network input and output sizes:
norgate = SupervisedDataSet(2, 1)
# Create a dataset to be used for testing.
nortrain = SupervisedDataSet(2, 1)
# Add input and target values to dataset
# Values for NOR truth table
norgate.addSample((0, 0), (1,))
norgate.addSample((0, 1), (0,))
norgate.addSample((1, 0), (0,))
norgate.addSample((1, 1), (0,))
# Add input and target values to dataset
# Values for NOR truth table
nortrain.addSample((0, 0), (1,))
nortrain.addSample((0, 1), (0,))
nortrain.addSample((1, 0), (0,))
nortrain.addSample((1, 1), (0,))
#Training the network with dataset norgate.
trainer = BackpropTrainer(nn, norgate)
# will run the loop 1000 times to train it.
for epoch in range(1000):
trainer.train()
trainer.testOnData(dataset=nortrain, verbose = True)
Resultado
A saída para o código acima é a seguinte -
python testnetwork.py
C:\pybrain\pybrain\src>python testnetwork.py
Testing on data:
('out: ', '[0.887 ]')
('correct:', '[1 ]')
error: 0.00637334
('out: ', '[0.149 ]')
('correct:', '[0 ]')
error: 0.01110338
('out: ', '[0.102 ]')
('correct:', '[0 ]')
error: 0.00522736
('out: ', '[-0.163]')
('correct:', '[0 ]')
error: 0.01328650
('All errors:', [0.006373344564625953, 0.01110338071737218,
0.005227359234093431, 0.01328649974219942])
('Average error:', 0.008997646064572746)
('Max error:', 0.01328649974219942, 'Median error:', 0.01110338071737218)
Exemplo usando SoftMaxLayer
Abaixo está um exemplo onde usamos SoftmaxLayer para construir uma rede -
from pybrain.tools.shortcuts import buildNetwork
from pybrain.structure.modules import SoftmaxLayer
from pybrain.datasets import SupervisedDataSet
from pybrain.supervised.trainers import BackpropTrainer
# Create a network with two inputs, three hidden, and one output
nn = buildNetwork(2, 3, 1, bias=True, hiddenclass=SoftmaxLayer)
# Create a dataset that matches network input and output sizes:
norgate = SupervisedDataSet(2, 1)
# Create a dataset to be used for testing.
nortrain = SupervisedDataSet(2, 1)
# Add input and target values to dataset
# Values for NOR truth table
norgate.addSample((0, 0), (1,))
norgate.addSample((0, 1), (0,))
norgate.addSample((1, 0), (0,))
norgate.addSample((1, 1), (0,))
# Add input and target values to dataset
# Values for NOR truth table
nortrain.addSample((0, 0), (1,))
nortrain.addSample((0, 1), (0,))
nortrain.addSample((1, 0), (0,))
nortrain.addSample((1, 1), (0,))
#Training the network with dataset norgate.
trainer = BackpropTrainer(nn, norgate)
# will run the loop 1000 times to train it.
for epoch in range(1000):
trainer.train()
trainer.testOnData(dataset=nortrain, verbose = True)
Resultado
O resultado é o seguinte -
C:\pybrain\pybrain\src>python example16.py
Testing on data:
('out: ', '[0.918 ]')
('correct:', '[1 ]')
error: 0.00333524
('out: ', '[0.082 ]')
('correct:', '[0 ]')
error: 0.00333484
('out: ', '[0.078 ]')
('correct:', '[0 ]')
error: 0.00303433
('out: ', '[-0.082]')
('correct:', '[0 ]')
error: 0.00340005
('All errors:', [0.0033352368788838365, 0.003334842961037291,
0.003034328685718761, 0.0034000458892589056])
('Average error:', 0.0032761136037246985)
('Max error:', 0.0034000458892589056, 'Median error:', 0.0033352368788838365)
Criando Camada no Pybrain
No Pybrain, você pode criar sua própria camada da seguinte maneira -
Para criar uma camada, você precisa usar NeuronLayer class como a classe base para criar todos os tipos de camadas.
Exemplo
from pybrain.structure.modules.neuronlayer import NeuronLayer
class LinearLayer(NeuronLayer):
def _forwardImplementation(self, inbuf, outbuf):
outbuf[:] = inbuf
def _backwardImplementation(self, outerr, inerr, outbuf, inbuf):
inerr[:] = outer
Para criar uma camada, precisamos implementar dois métodos: _forwardImplementation () e _backwardImplementation () .
The _forwardImplementation() takes in 2 arguments inbufe outbuf, que são matrizes Scipy. Seu tamanho depende das dimensões de entrada e saída das camadas.
O _backwardImplementation () é usado para calcular a derivada da saída em relação à entrada fornecida.
Portanto, para implementar uma camada no Pybrain, este é o esqueleto da classe da camada -
from pybrain.structure.modules.neuronlayer import NeuronLayer
class NewLayer(NeuronLayer):
def _forwardImplementation(self, inbuf, outbuf):
pass
def _backwardImplementation(self, outerr, inerr, outbuf, inbuf):
pass
Caso você queira implementar uma função polinomial quadrática como uma camada, podemos fazer da seguinte maneira -
Considere que temos uma função polinomial como -
f(x) = 3x2
A derivada da função polinomial acima será a seguinte -
f(x) = 6 x
A classe da camada final para a função polinomial acima será a seguinte -
testlayer.py
from pybrain.structure.modules.neuronlayer import NeuronLayer
class PolynomialLayer(NeuronLayer):
def _forwardImplementation(self, inbuf, outbuf):
outbuf[:] = 3*inbuf**2
def _backwardImplementation(self, outerr, inerr, outbuf, inbuf):
inerr[:] = 6*inbuf*outerr
Agora vamos usar a camada criada conforme mostrado abaixo -
testlayer1.py
from testlayer import PolynomialLayer
from pybrain.tools.shortcuts import buildNetwork
from pybrain.tests.helpers import gradientCheck
n = buildNetwork(2, 3, 1, hiddenclass=PolynomialLayer)
n.randomize()
gradientCheck(n)
GradientCheck () testará se a camada está funcionando bem ou não. Precisamos passar a rede onde a camada é usada para o gradientCheck (n). Ele dará a saída como “Gradiente Perfeito” se a camada estiver funcionando bem.
Resultado
C:\pybrain\pybrain\src>python testlayer1.py
Perfect gradient